Recall that $S(\times_{\text{et}})$ has enough injectives, so we can work with right derived functors. Examples 1) Consider the functor $\Gamma(x,-)$: $S(x_{e}t) \rightarrow Ab$. Then $R^i\Gamma(x,F) = H^i(x,F)$ the cohomology. Given a s.e.s, we get S-functors for a l.e.s. 2) Consider f: $y \rightarrow X$ of schemes. Then $f_p: S(y_{e+}) \rightarrow S(x_{e+})$ by $(f_k F)(u) = F(u \times y)$.
This has a left adjoint f^* , and also have higher direct images $R^i f_*$. 3) We have morphisms $X_{ft} \stackrel{\pi}{\longrightarrow} X_{et} \stackrel{\pi}{\longrightarrow} X_{zar}$, which can also be derived. We say a flabby sheaf is if $\forall u \rightarrow x$, $H^{i}(u_{et}, Fl_{u}) = 0$, $i > 0$. Then π_{φ} preserves flabby sheaves. $\frac{1 \text{ km} \cdot}{1 \cdot \frac{1}{1 \cdot \frac{1}{$ $E_2^{P,\delta}$ = $H^P(X_{\epsilon}, R^{\gamma}\pi_{\epsilon}F)$ \Rightarrow $H^{r\cdot\delta}(X_{\epsilon}, F)$ $\begin{array}{lllllll} \hbox{ϵ} & \hbox{any} & \hbox{map} & \hbox{of} & \hbox{sites} & \pi\colon X_F\hookrightarrow X_F\,, & \hbox{we} & \hbox{have} & \hbox{the} & \hbox{Levy} & \hbox{spectral} & \hbox{sequence} & \hbox{with} \ \hline 2^8 = & H^P(X_E, R^{\sharp} \pi_{\sharp} F) & \hbox{in} & H^{\sharp * \sharp}(X'_E, F) & \hbox{then} & \hbox{then} & \hbox{the} & \hbox{the} & \hbox{the} & \hbox{the} & \hbox{the} & \hbox{the} &$ 2) For any triple $X_{\varepsilon}^{\prime\prime} \xrightarrow{\pi} X_{\varepsilon}^{\prime}$, X_{ε} , we have the Grothendieck spectral sequence with $E_{2}^{\beta} = (R_{\pi x}^{\beta}) (R^{\beta} \pi_{x}^{\prime}) (F) \Rightarrow R^{\beta} (\pi \pi^{\prime})_{x} F.$ $Proset:$ Thun 1.18 in chap 3, EC. \blacksquare These can be used to give a comparison Theorem: $\frac{\pi}{\mu}$ $H^{i}(X_{zav}, F) = H^{i}(X_{z}H, W(F)),$ where $W(F) (u \stackrel{H}{\rightarrow} X) = \Gamma(u, f^{*}F).$ $Prof:$ Since $H^p(X_{zor}, R^3\pi_{w} \omega(F)) \Rightarrow H^{pr\delta}(X_{gt}, W(F)),$ its enough to show $R^j\pi_{w}W(F) = 0$ for g>0. One can compute this w/ Cech cohomology see EC. B $\frac{1}{\mu}$ Let G be a quasi-proj X-scheme, which is a group scheme. Then calling by G the sheaf G represents, $H'(X_{et}, G) = H'(X_{\ell\ell}, G)$ Etale a Complex Cohomology Let X be a smooth scheme over Spec C. Then for any finite group 1, we have $H^{i}_{sing} (X(\mathcal{L}), \Lambda) \cong H^{i} (X_{et}, \Lambda)$. We usually take Λ = $\mathbb{Z}/2\mathbb{Z}$, it prime, and the inverse system with surjective maps: $\frac{2}{2}$ 2 $\rightarrow \frac{2}{2}$ Then we can check whether or not $H^c(-, \lim_{n \to \infty} \mathbb{Z}/x^n \mathbb{Z}) \cong \lim_{n \to \infty} H^c(-, \mathbb{Z}/x^n \mathbb{Z})$ In the surjective case, we are good. $\frac{\mathcal{D}_{e}f: H^{i}(X_{et}, \mathbb{Z}_{\lambda}) = \lim_{\phi \downarrow 0} H^{i}(X_{et}, \mathbb{Z}/\mathbb{Z}_{\lambda})$ and \mathbb{Q}_{λ} -étale cohomology is given by:
 $H^{i}(X_{et}, \mathbb{Q}_{\lambda}) = H^{i}(X_{et}, \mathbb{Z}_{\lambda}) \otimes_{\mathbb{Z}_{\lambda}} \mathbb{Q}_{\lambda}$. Now let G be a profinite group (cf. Gal (ks/k)) and consider discrete G-modules M, and this category is abelian with enough injectives. We know $M\mapsto M^G$ is left exact, and the derived functors give the Galois cohomology $H^i(G;\mu)$. $\frac{H^{\circ}(G; \mu)}{L_{open, normal}} = \frac{H^{\circ}(G/\mu, \mu)}{L_{open, normal}}$ subgrp $Conallowy: H^3(G; \mathcal{M})$ is a torsion group.

and so we get a guotient set H' (U, G). $ii)$ Prove $H'(u,G) \cong$ [iso. classes of prin. G-bundles, trivialized by u }. $i(i)$ Define $\check{H}^1(X,G) = \lim \check{H}^1(\mathcal{U},G)$, taken over refinement, and show $\check{H}^1(X,G)$ classifies prin. hom. G-spaces on X. Exercise $27: 7f$ O $\rightarrow G' \rightarrow G \rightarrow G'' \rightarrow O$ is a s.e.s. of top. groups, we get an exact sequence of pointed sets $0 \to G'(x) \to G(x) \to G''(x) \to H'(x,G') \to H'(x,G) \to H'(x,G')$ where $G(X) = \text{Ham}(X,G)$ " Thue" Objects on X that locally are of the form $U_i \times S$, are classified by the set $H'(x, Aut S)$. In particular f(' ((Speek)_{et,} Gl.n) classifies *k-modules M with MO_k ks a rank* n module, which of course are all vector spaces (all iso). Hence if vanishes. k_{s} Now $Br(k)$ classifies division algebras over k. If D & D' are two sach algebras, $D' \otimes_k D$ is not a division algebra in general. Def: A k-algebra A is a central simple algebra if 1) A is a simple ring 2) $dim_{14} A \neq \infty$ 3) $Z(A) = k$. An example is $D\otimes_k D'$ (and all division algebrus), or $M_n(D)$. is isomorphic to Mu(D) for some division algebra D. Thin Any csa Cor: $CSA's$ form a commutative associative monoid under $-\otimes_k -$, with k the identity. So we introduce an equivalence relation : $A_1 \sim A_2$ iff $A_1 = M_{n_1}(D)$ + $A_2 = M_{n_2}(D)$ for some n_1 anz. <u>Exercise 28:</u> 1) $A_1 \cdot A_2$ $CSA_s' \Rightarrow A_1 \otimes_A A_2$ is a CSA_1 $2)$ A CSA => $A^{\circ}P$ CSA, 3) $A \otimes_k A^{\circ} = M_n(k)$ for some $n,$ 4) A a csa/k, kck', then A ®ak' is a CSA/k'. Thm: The operation $-\otimes_{\mathbf{k}}$ descends to a group operation on CSA's/ n , giving the Brauer group Br (k), which is functorial in field extensions. Def: If A is a CSA /k, then kck' is a splitting field of A if [A] e ker(Br(k)-Br(k)) (called Br(k/k)) iff $A\otimes_k k' = M_k(k')$. Every CSA has a splitting field (that is finite over k), dimn $A = n^2$, and any simple subobject B, every ore Aut B comes from a ba - o (b) for some a e A. In addition we can find $C \sim A$ with a subfield $K \subset C$, s.t. $[K : \mu] = \sqrt{dim_{\mu}C}$, and K splits C , and $Z_{c}(K) = K$,

and the is Galois.

Let $k cKcB$ as above, and G = Gal (K/k) . Then GCK , and take some $\sigma \in G$. Then we know σ comes from conjugation $\sigma(\gamma)$ = x_{σ} γx_{σ} γy_{σ} K. Can show that $\{x_{\sigma}\}\ \sigma \in G\}$ is a K-basis of B. Moreover $x_{\sigma \tau} (x_{\sigma} x_{\tau})^{-1} \in Z_{B}(K) = K$, call this element $f(\sigma,\tau)$, and so $f:G\times G\to K^*$ and satisfies some 2-cocycle condition. $\frac{1 \text{ km}}{1 \text{ m}}$ 1) Lf] E H²(G, K^{*}) depends only on LBJ e Br (''/k) ^C Br (k)
a) d l 2) Get a grp hom $Br(K/\mu) \rightarrow H^2(G,K)$ 3) It's an ise Passing to the limit over finite Galois extensions we get Brch H4GuKds H Specket Gm and hence $Br(k)$ is torsion.